International Journal of Applied Science and Engineering
Published by Chaoyang University of Technology

Indah Riwayati 1, Suci Madhania 1, Sugeng Winardi 1, Manabu Shimada 2, Kusdianto 1*

1 Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

2 Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 4-1, Kagamiyama 1-chome, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Download Citation: |
Download PDF


ABSTRACT


Zinc oxide nanoparticles (ZnO NPs) are extensively applied in numerous domains, including photocatalytic, antibacterial, anti-inflammatory, and anticancer applications. Utilization of ZnO NPs in numerous domains has generated increasing demand. Therefore, it is imperative to consider an economical, highly efficient, and sustainable approach. One plausible method for accomplishing these criteria is biological. This study aimed to investigate the reaction mechanism and physical, chemical, morphological, and optical characteristics of ZnO NPs emanated from Cosmos caudatus leaf extract employing a bioreduction approach. Furthermore, molecular docking analysis was conducted to obtain insights into the specific interactions between ZnO NPs and proteins found within microbial cells. X-ray diffraction (XRD) validated the existence of ZnO NPs, bearing a mean crystallite diameter of 50.54 nm. The morphology observed through scanning electron microscopy (SEM) examination exhibited hexagonal-shaped particles with a relatively consistent size distribution. The maximum absorbance was noticed at 385 nm, characterized by a band gap of 3.04 eV. Molecular docking showed that the ligand (ZnO) bound to Escherichia coli and Aspergillus niger which possess bond energies of -3.4 kcal/mol and -2.6 kcal/mol, respectively, and Staphylococcus aureus with -2.3 kcal/mol.


Keywords: Band gap, Biological, Cosmos caudatus, Green synthesis ZnO nanoparticle


Share this article with your colleagues

 


REFERENCES


  1. Aabid, A.A., Humadi, J.I., Ahmed, G.S., Talib Arullah, A., Ahmed, M.A., Abdullah, W.S. 2023. Enhancement of desulfurization process for light gas oil using new zinc oxide loaded over alumina nano catalyst. Applied Science and Engineering Progress, 16, 6756–1804.

  2. Abdelhamid Shahat, M., Ahmed Ghitas, El-Hossary, F.M., Abd El-Rahman, A.M. 2022. ZnO nanoparticles for photocatalytic methyl orange degradation : hydrothermal synthesis , characterization , and optimization ZnO nanoparticles for photocatalytic methyl orange degradation. Materials Science and Engineering, 1269, 012010.

  3. Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J., Schroeder, M. 2021. Plip 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49, W530–534.

  4. Agarwal, H., Nakara, A., Shanmugam, V.K. 2019. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine and Pharmacotherapy, 109, 2561–2572.

  5. Ahmad, W., Kalra, D. 2020. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University–Science, 32, 2358–2364.

  6. Alvarez-Chimal, R., Garcıa-Perez, V.I , Alvarez-Pe´rez, M.A., Tavera-Hernandez, R., Reyes-Carmona,L., Martınez-Hernandez, M., Arenas-Alatorre, J.A. 2022. Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania Ambrosioides Extract, supported by molecular docking analysis. Arabian Journal of Chemistry, 15, 103804.

  7. Amin, N.M., Noor, N.M. 2014. Cosmos Caudatus Kunth: A traditional medicinal herb. Global Journal of Pharmacology, 8, 420–426.

  8. Ansari, M.A, Murali, M., Prasad, D., Alzohairy, M.A., Almatroudi, A., Alomary, M.N., Udayashankar, A.C., Singh, S.B., Asiri, S.M.M., Ashwini, B.S., Gowtham, H.G., Kalegowda, N., Amruthesh, K.N., Lakshmeesha, T.R., Niranjana, S.R. 2020. Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomolecules, 10, 336.

  9. Aravind, M., Kumaresubitha, T., Ahmed, N., Velusamy, P. 2022. DFT, molecular docking, photocatalytic and antimicrobial activity of coumarin enriched cinnamon bark extract mediated silver nanoparticles. Inorganic Chemistry Communications, 146, 110176.

  10. Arumugam, J., Thambidurai, S., Suresh, S., Selvapandiyan, M., Kandasamy, M., Pugazhenthiran, N., Karthick Kumar, S., Muneeswaran, T., Quero, F. 2021. Green synthesis of zinc oxide nanoparticles using ficus carica leaf extract and their bactericidal and photocatalytic performance evaluation. Chemical Physics Letters, 783, 139040.

  11. Awasthi, K.K., Awasthi, A., Verma, R., Soni, I., Awasthi, K., John, P.J. 2015. Silver nanoparticles and carbon nanotubes induced DNA damage in mice evaluated by single cell gel electrophoresis. Macromolecular Symposia, 357, 210–217.

  12. Azwanida, Z.N., Jonathan, O.E., Melanie-Jaynes, H. 2020. Antioxidant, anti-collagenase, anti-elastase and anti-tyrosinase activities of an aqueous cosmos caudatus kunth (Asteraceae) leaf extract. Tropical Journal of Natural Product Research, 4, 1124–1130.

  13. Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., Jurga, S. 2022. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12, 8148.

  14. Barzinjy, A.A., Azeez, H.H. 2020. Green synthesis and characterization of zinc oxide nanoparticles using eucalyptus globulus labill. Leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2, 991.

  15. Beasley, F.C., Vinés, E.D., Grigg, J.C., Zheng, Q., Liu, S., Lajoie, G.A., Heinrichs, D.E. 2009. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Molecular Microbiology, 72, 947–963.

  16. Boz, E., Stein, M. 2021. Accurate Receptor-Ligand Binding Free Energies from Fast QM Conformational Chemical Space Sampling. International Journal of Molecular Sciences, 22, 3078.

  17. Chakraborty, S., Farida, J.J., Simon, R., Kasthuri, S., Mary, N.L. 2020. Averrhoe carrambola fruit extract assisted green synthesis of ZnO nanoparticles for the photodegradation of congo red dye. Surfaces and Interfaces, 19, 100488.

  18. Daoud, A., Malika, D., Bakari, S., Hfaiedh, N., Mnafgui, K., Kadri, A., Gharsallah, N. 2019. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. Arabian Journal of Chemistry, 12, 3075–3086.

  19. Debanath, M.K., Karmakar, S. 2013. Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119.

  20. Elbrolesy, A., Abdou, F.A.E.Y., Morsy, R. 2024. Facile synthesis and biophysical characterization of novel Zinc Oxide / Fe3O4 Hybrid Nanocomposite as a potentially active agent in sunscreens. Arabian Journal for Science and Engineering, 49, 1083–1093.

  21. El-Fallal, A.A., Elfayoumy, R.A., El-Zahed, M.M. 2023. Antibacterial activity of biosynthesized zinc oxide nanoparticles using kombucha extract. SN Applied Sciences, 5, 332.

  22. Eswari, K.M., Asaithambi, S., Karuppaiah, M., Sakthivel, P., Balaji, V., Ponelakkia, D.K. 2022. Green synthesis of ZnO nanoparticles using Abutilon Indicum and Tectona Grandis leaf extracts for evaluation of anti-diabetic, anti-inflammatory and in-vitro cytotoxicity activities. Ceramics International, 48, 33624–33634.

  23. Firdaus, M.D., Artanti, N., Hanafi, M., Rosmalena. 2021. Phytochemical constituents and In vitro antidiabetic and antioxidant properties of various extracts of Kenikir (Cosmos caudatus) Leaves. Pharmacognosy Journal, 13, 890-895.

  24. Greeshma, K.P., Thamizselvi, R. 2022. Experimental and theoretical approach on green synthesized zinc oxide nanoparticles from combined leaf extracts of Catharanthus Roseus and Morinda Citrifolia for invitro anti-cancer studies. Journal of Molecular Liquids, 351, 118636.

  25. Hajiashrafi, S., Motakef-Kazemi, N. 2018. Green synthesis of zinc oxide nanoparticles using parsley extract. Nanomedicine Research Journal, 3, 44–50.

  26. Hudandini, M., Puri, N.R., Winardi, S., Widiyastuti, W., Shimada, M., Kusdianto, K. 2022. Photocatalytic activity of ZnO/Ag nanoparticles fabricated by a spray pyrolysis method with different O2:N2 carrier gas ratios and Ag contents. Catalysts, 12, 1374.

  27. Jayachandran, A., T.R., A., Nair, A.S. 2021. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia Pedata Leaf Extract. Biochemistry and Biophysics Reports, 26, 100995.

  28. Jiang, J., Pi, J., Cai, J. 2018. The advancing of Zinc Oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1–18.

  29. Kalam, A., Allami, S., Al-sehemi, A., Assiri, M., Yadav, P. 2022. Effect of stabilizer on optical band gap of ZnO and their performance in dye-sensitized solar cells. Bulletin of the Chemical Society of Ethiopia, 36, 209–222.

  30. Kamarajan, G., Anburaj, D.B., Porkalai, V., Muthuvel, A., Nedunchezhian, G. 2022. Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles. Journal of the Nigerian Society of Physical Sciences, 4, 892.

  31. Kanwal, S., Khan, M.T., Zaman, A., Tirth, V., Algahtani, A. 2023. Comparison the effect of co-precipitation and sol-gel techniques on the structural and magnetic attributes of ZnO and Zn(1-x) Fe0.05 CoxO nanoparticles for attaining room temperature ferromagnetism (RTFM). Digest Journal of Nanomaterials and Biostructures, 18, 1025–37.

  32. Kusdianto, K., Sari, T.D., Laksono, M.A., Madhania, S., Winardi, S. 2021. Fabrication and application of ZnO-Ag nanocomposite materials prepared by gas-phase methods. IOP Conference Series: Materials Science and Engineering, 1053, 012023.

  33. Limón-Rocha, I., Guzmán-González, C.A., Anaya-Esparza, L.M., Romero-Toledo, R., Rico, J.L., González-Vargas, O.A., Pérez-Larios, A. 2022. Effect of the precursor on the synthesis of zno and its photocatalytic activity. Inorganics, 10, 1–17.
  34. Matinise, N., Fuku, X.G., Kaviyarasu, K., Mayedwa, N., Maaza, M. 2017. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties and mechanism of formation. Applied Surface Science, 406, 339–347.

  35. Mayedwa, N., Mongwaketsi, N., Khamlich, S., Kaviyarasu, K., Matinise, N., Maaza, M. 2018. Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties and mechanism of formation. Applied Surface Science, 446, 266–272.

  36. Mayekar, J., Dhar, V., Radha, S. 2014. Role of salt precursor in the synthesis of zinc oxide nanoparticles. International Journal of Research in Engineering and Technology, 03, 43–45.

  37. McAuley, K.E., Svendsen, A., Patkar, S.A., Wilson, K.S. 2004. Structure of a feruloyl esterase from Aspergillus niger. Acta Crystallographica Section D, Biological Crystallography, 60, 878–887.

  38. Mendes, C.R., Dilarri, G., Forsan, C.F., Sapata, V. de M.R., Lopes, P.R.M., de Moraes, P.B., Montagnolli, R.N., Ferreira, H., Bidoia, E.D. 2022. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12, 2658.

  39. Nagababu, U., Govindh, B., Diwakar, B. S., Kumar, G. K., Chatterjee, A. 2018. Synthesis andoptical charecterizationof luminescent ZnO NPs using Tinospora Crispa Stema- Green serspective. Rasayan Journal of Chemistry, 11, 1587–1593.

  40. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4, 97–118.

  41. Nava, O.J., Soto-Robles, C.A., Gómez-Gutiérrez, C.M., Vilchis-Nestor, A.R., Castro-Beltrán, A., Olivas, A., Luque, P.A. 2017. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. Journal of Molecular Structure, 1147, 1–6.

  42. Nilavukkarasi, M., Vijayakumar, S., Prathipkumar, S. 2020. Materials science for energy technologies Capparis Zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Materials Science for Energy Technologies, 3, 335–43.

  43. Nizamuddin, S., Hymavathi, A., Yaku, G., Umesh Kumar, U. 2022. Green synthesis and characterization of ZnO nanoparticles-a novel approach using Carica Papaya leaf extract. Materials Today: Proceedings, 62, 6854–6.

  44. Noriham, A., Dian-Nashiela, F., Kherni Hafifi, B., Nooraain, H., Azizah, A.H. 2015. Influences of maturity stages and extraction solvents on antioxidant activity of Cosmos Caudatus leaves, 3, 1–10.

  45. Osuntokun, J., Onwudiwe, D.C., Ebenso, E.E. 2019. Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 12, 444–457.

  46. Owais Mushtaq, S., Sharma, R., Agrawal, A., Sharma, A., Kumar, S., Awasthi, K., Awasthi, A. 2022. Green synthesis of ZnO nanoparticles from Saffron Corm extract and their bactericidal activity. Materials Today: Proceedings, 69, 74–81.

  47. Pal, K., Chakroborty, S., Nath, N. 2022. Limitations of nanomaterials insights in green chemistry sustainable route : review on novel applications. Green Processing and Synthesis, 11, 951–964.

  48. Prasad, A.R., Basheer, S.M., Gupta, I.R., Elyas, K.K., Joseph, A. 2020. Investigation on Bovine Serum Albumin (BSA) binding efficiency and antibacterial activity of ZnO nanoparticles. Materials Chemistry and Physics, 240, 122115.

  49. Qiu, X., Janson, C.A., Smith, W.W., Head, M., Lonsdale, J., Konstantinidis, A.K. 2001. Refined structures of β-ketoacyl-acyl carrier protein synthase III11Edited by I. A. Wilson. Journal of Molecular Biology, 307, 341–356.

  50. Rajendrachari, S., Taslimi, P., Karaoglanli, A.C., Uzun, O., Alp, E., Jayaprakash, G.K. 2021. Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arabian Journal of Chemistry, 14, 103180.

  51. Resmi, R., Yoonus, J., Beena, B. 2021. Materials Today : Proceedings A novel greener synthesis of ZnO nanoparticles from Nilgiriantusciliantus leaf extract and evaluation of its biomedical applications. Materials Today: Proceedings, 46, 3062–3068.

  52. Roxy M.S., Ananthu A., Sumithranand V. 2021. Synthesis and characterization of undoped and magnesium doped zinc oxide nanoparticles. International Journal of Scientific Research in Science and Technology, 8, 134–139.

  53. Saad, B.L., Soltane, L., Sediri, F. 2019. Pure and Cu-doped ZnO nanoparticles: hydrothermal synthesis, structural, and optical properties. Russian Journal of Physical Chemistry A, 93, 2782–8.

  54. Sadiq, H., Sher, F., Sehar, S., Lima, E.C., Zhang, S., Iqbal, H.M.N., Nuhanović, M. 2021. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids, 335, 116567.

  55. Saha, R., Subramani, K., Sikdar, S., Fatma, K., Rangaraj, S. 2021. Effects of processing parameters on green synthesised zno nanoparticles using stem extract of swertia chirayita. Biocatalysis and Agricultural Biotechnology, 33, 101968.

  56. Sangeetha, G., Rajeshwari, S., Rajendran, V. 2011. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Materials Research Bulletin, 46, 2560–2566.

  57. Sasi, S., Fathima Fasna, P.H., Bindu Sharmila, T.K., Julie Chandra, C.S., Antony, J.V., Raman, V., Ramanathan, H.N. 2022. Green synthesis of ZnO nanoparticles with enhanced photocatalytic and antibacterial activity. Journal of Alloys and Compounds, 924, 166431.

  58. Sharma, D., Thakur, N., Vashistt, J., Bisht, G.S. 2018. Antibacterial evaluation of cuprous oxide nanoparticles synthesized using leaf extract of Callistemon Viminalis. Indian Journal of Pharmaceutical Education and Research, 52, 449–455.

  59. Tangkawanit, S., Culshaw, E.V., Keawsri, P. 2023. Enhancing cotton fabrics properties by coating with zinc oxide and carbon black nanomaterial and dyeing with terminalia Catappa Leaves Powder. Applied Science and Engineering Progress, 16, 5868.

  60. Thiruganasambantham,T., Thiagamani, S.M.K., Natarajan, H., Siengchin, S., Rangappa, S.M. 2023. Fabrication and characterization of an active nanocomposite film based on polystyrene/thyme ZnO for food packaging. Applied Science and Engineering Progress, 16, 6440.

  61. Vasquez, R.D., Apostol, J.G., de Leon, J.D., Mariano, J.D., Mirhan, C.M.C., Pangan, S.S., Reyes, A.G.M., Zamora, E.T. 2016. Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum Siliquosum J.G. Agardh: assessment of toxicity and hepatoprotective activity. OpenNano, 1, 16–24.

  62. Velsankar, K., Sudhahar, S., Maheshwaran, G., Krishna Kumar, M. 2019. Effect of biosynthesis of ZnO nanoparticles via Cucurbita Seed extract on Culex Tritaeniorhynchus Mosquito Larvae with its biological applications. Journal of Photochemistry and Photobiology B: Biology, 200, 111650.

  63. Vijayakumar, S., Arulmozhi, P., Kumar, N., Sakthivel, B., Prathip Kumar, S., Praseetha, P.K. 2020. Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: characterization and antimicrobial activities. Materials Today: Proceedings, 23, 73–80.

  64. Vinayagam, R., Sharma, G., Murugesan, G., Pai, S., Gupta, D., Narasimhan, M.K., Selvaraj, R. 2022. Rapid photocatalytic degradation of 2, 4-dichlorophenoxy acetic acid by ZnO nanoparticles synthesized using the leaf extract of Muntingia calabura. Journal of Molecular Structure, 1263, 133127.

  65. Visveshwari M., Subbaiyan B., Thangapandian V. 2018. Phytochemical analysis, antibacterial activity, FTIR and GCMS analysis of Ceropegia juncea Roxb. International Journal of Pharmacognosy and Phytochemical Research, 9, 914–920.

  66. Yang, H., Zhang, J., Li, Z., Huang, J., Wu, J., Zhang, Y., Ge, H. 2023. antibacterial effect of low-concentration ZnO nanoparticles on sulfate-reducing bacteria under visible light. Nanomaterials, 13, 2033.

  67. Zeghoud, S., Hemmami, H., Ben, B., Ben, I., Kouadri, I., Rebiai, A., Messaoudi, M., Ahmed, S. 2022. A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Materials Today Communications, 33, 104747.

  68. Zhu, W., Hu, C., Ren, Y., Lu, Y., Song, Y., Ji, Y., He, J. 2021. Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L.) Presl leaf extracts and its antifungal activity. Journal of Environmental Chemical Engineering, 9, 106659.


ARTICLE INFORMATION


Received: 2024-06-04
Revised: 2024-07-15
Accepted: 2024-09-30
Available Online: 2024-12-30


Cite this article:

Riwayati, I., Madhania, S.,Winardi, S., Kusdianto,Shimada, M. 2024. Cosmos caudatus extract-intervened zinc oxide nanoparticles: reaction mechanism, molecular docking, and optical properties. International Journal of Applied Science and Engineering, 21, 2024177. https://doi.org/10.6703/IJASE.202412_21(5).004

  Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.