REFERENCES
- Aldobali, M., Pal, K., Chhabra, H. 2022. Noninvasive health monitoring using bioelectrical impedance analysis. Computational Intelligence in Healthcare Applications, 209–236.
- Archer, K.J., Kimes, R.V. 2008. Empirical characterization of random forest variable importance measures. Computational Statistics and Data Analysis, 52, 2249–2260.
- Ashwell, M., Gunn, P., Gibson, S. 2011. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obesity Reviews, 13, 275–286.
- Barquera, S., Hernandez-Barrera, L., Trejo-Valdivia, B., Shamah, T., Campos-Nonato, I., Rivera-Dommarco, J. 2020. Obesidad en México, prevalencia y tendencias en adultos. Ensanut 2018-19. Salud Pública de México, 62, 682–692.
- Bohm, A., Heitmann, B.L. 2013. The use of bioelectrical impedance analysis for body composition in epidemiological studies. European Journal of Clinical Nutrition, 67, 79–85.
- Chen, R.C., Dewi, C., Huang, S.W., Caraka, R.E. 2020. Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7, 1–26.
- Crowson, M.G., Moukheiber, D., Arevalo, A.R., Lam, B.D., Mantena, S., Rana, A., Goss, D., Bates, D.W., Celi, L. A. 2022. A systematic review of federated learning applications for biomedical data. PLOS Digital Health, 1, 1–14.
- Chatterjee, A., Gerdes, M.W., Martinez, S.G. 2020. Identification of risk factors associated with obesity and overweight-a machine learning overview. Sensors (Basel), 20, 2734.
- de-Mateo-Silleras, B., de-la-Cruz-Marcos, S., Alonso-Izquierdo, L., Camina-Martín, M.A., Marugán-de-Miguelsanz, J.M., Redondo-Del-Río, M.P. 2019. Bioelectrical impedance vector analysis in obese and overweight children. PLoS One. 14, e0211148.
- Devajit, M., Haradhan, K.M. 2023. Body mass index (BMI) is a popular anthropometric tool to measure obesity among adults. Journal of Innovations in Medical Research, 2, 25–33.
- Dhabarde, S., Mahajan, R., Mishra, S., Chaudhari, S., Manelu, S., Shelke, N.S. 2022. Disease prediction using machine learning algorithms. 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22), 1–4.
- Freedman, M.R., Rubinstein, R.J. 2010. Obesity and food choices among faculty and staff at a large urban university. Journal of American College Health. 59, 205–210.
- Ganggayah, M.D., Taib, N.A., Har, Y.C., Lio, P., Dhillon, S.K. 2019. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Medical Informatics and Decision Making, 19, 1–17.
- Geron, A. 2019. Hands-on machine learning with scikit-learn and TensorFlow. O'Reilly Media. U.S.A.
- Gregorutti, B., Michel, B., Saint-Pierre, P. 2017. Correlation and variable importance in random forests. Statistics and Computing, 27, 659–678.
- Gutierrez-Esparza, G.O., Vazquez, O.I., Vallejo, M., Hernandez-Torruco, J. 2020. Prediction of metabolic syndrome in a Mexican population applying machine learning algorithms. Symmetry, 12. 581–596.
- He, L., Ren, X., Qian, Y., Jin, Y., Chen, Y., Guo, D., Yao, Y. 2014. Prevalence of overweight and obesity among a university faculty and staffs from 2004 to 2010, China. Nutrición Hospitalaria, 29, 1033–1037.
- Heydari, S.T., Ayatollahi, S.M., Zare, N. 2011. Diagnostic value of bioelectrical impedance analysis versus body mass index for detection of obesity among students. Asian Journal of Sports Medicine. 2, 68–74.
- Javaid, M., Haleem, A., Singh, R.P., Suman, R., Rab, S. 2022. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3, 58–73.
- Jensen, M.D. 2008. Role of body fat distribution and the metabolic complications of obesity. Journal of Clinical Endocrinology and Metabolism, 93, 57–63.
- Jiang, M., Yin, S. 2023. Facial expression recognition based on convolutional block attention module and multi-feature fusion. International Journal of Computational Vision and Robotics. 13, 21–37.
- Jiang, Y., Yin, S. 2023. Heterogenous-view occluded expression data recognition based on cycle-consistent adversarial network and K-SVD dictionary learning under intelligent cooperative robot environment. Computer Science and Information Systems, 34.
- Kiang, M.Y. 2003. A comparative assessment of classification methods. Decision Support Systems, 35, 441–454.
- Laghari, A.A., Yin, S. 2022. How to collect and interpret medical pictures captured in highly challenging environments that range from nanoscale to hyperspectral imaging. Current Medical Imaging, 54, 36582065.
- Laghari, A.A., He, H., Shafiq, M., Khan, A. 2018. Assessment of quality of experience (QoE) of image compression in social cloud computing. Multiagent Grid Systems, 14, 125–143.
- Laghari, A. A., Shahid, S., Yadav, R., Karim, S., Khan, A., Li, H., Yin, S. 2023. The state of art and review on video streaming. Journal of High Speed Networks, (Preprint), 1–26.
- Macias, N., Espinosa-Montero, J., Monterrubio-Flores, E., Hernandez-Barrera, L., Medina-Garcia, C., Gallegos-Carrillo, K. 2021. Screen-based sedentary behaviors and their association with Metabolic Syndrome components among adults in Mexico. Preventing Chronic Disease, 18, 1–12.
- Manickam, P., Mariappan, S.A., Murugesan, S.M., Hansda, S., Kaushik, A., Shinde, R., Thipperudraswamy, S.P. 2022. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors, 12, 562–591.
- McLaren, C.E., Chen, W.P., Nie, K., Su, M.Y. 2009. Prediction of malignant breast lesions from MRI features: A comparison of artificial neural network and logistic regression Techniques. Academic Radiology, 16, 842–851.
- Medina, C., Janssen, I., Campos, I., Barquera, S. 2013. Physical inactivity prevalence and trends among Mexican adults: Results from the national health and nutrition survey (ENSANUT) 2006 and 2012. BMC Public Health, 13, 1–10.
- Medina, C., Tolentino-Mayo, L., Lopez-Ridaura, R., Barquera, S. 2017. Evidence of increasing sedentarism in Mexico City during the last decade: Sitting time prevalence, trends, and associations with obesity and diabetes. Plos One, 12, 1–15.
- Mendoza-Niño, C., Martinez-Robles, J.D., Gallardo-Garcia, I. 2023. Relationship between overweight and obesity with the progression of chronic kidney disease in patients at the Naval Medical Center in Mexico. Enfermería Nefrologica, 26, 60–66.
- Meng, X., Wang, X., Yin, S. Li, H. 2023. Few-shot image classification algorithm based on attention mechanism and weight fusion. Journal of Engineering and Applied Science, 70, 14.
- Misra, P., Yadav, A.S. 2020. Improving the classification accuracy using recursive feature elimination with cross-validation. International Journal on Emerging Technologies, 11, 659–665.
- Nafis, N.S.M., Awang, S. 2021. An enhanced hybrid feature selection technique using term frequency-inverse document frequency and support vector machine-recursive feature elimination for sentiment classification. IEEE Access, 9, 52177–52192.
- Nithya, B., Ilango, V. 2019. Evaluation of machine learning based optimized feature selection approaches and classification methods for cervical cancer prediction. Applied Sciences, 1, 1–16.
- Payal, M., Kumar, K.S., Kumar, T.A. 2022. Recent advances of Machine Learning Techniques in Biomedicine. International Journal of Multidisciplinary Research in Science, Engineering and Technology, 5, 772–779.
- Peter, B., Bruce, A., Gedeck, P. 2020. Practical Statistics for Data Scientists. 2nd Edition. O'Reilly Media, Inc. U.S.A.
- Pouragha, H., Amiri, M., Saraei, M., Pouryaghoub, G., Mehrdad, R. 2021. Body impedance analyzer and anthropometric indicators; Predictors of metabolic syndrome. Journal of Diabetes and Metabolic Disorders, 20, 1169–1178.
- Pribyl, M.I., Smith, J.D., Grimes, G.R. 2011. Accuracy of the Omron HBF-500 body composition monitor in male and female college students. International Journal of Exercise Science, 4, 93–101.
- Ricciardi, R., Talbot, L.A. 2007. Use of bioelectrical impedance analysis in the evaluation, treatment, and prevention of overweight and obesity. Journal of the American Academy of Nurse Practitioners, 19, 235–241.
- Rodriguez-Guzman, L., Diaz-Cisneros, F., Rodriguez-Guzman, E. 2006. Overweight and obesity in teachers. Anales de la Facultad de Medicina, 67, 224–229.
- Rodrigues-Rodrigues, T., Viera Gomes, A.C, Rodrigues Neto, G. 2018. Nutritional status and eating habits of professors of health area. International Journal of Sport Studies for Health, 1, e64335.
- Russo, M.P., Grande-Ratti, M.F., Burgos, M.A., Molaro, A.A., Bonella, M.B. 2023. Prevalence of diabetes, epidemiological characteristics and vascular complications. Archivos de Cardiología de México, 93, 30–36.
- Safaei, M., Sundararajan, E.A., Driss, M., Boulila, W., Shapi'i, A. 2021. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity, Computers in Biology and Medicine, 136, 104754.
- Sanabria-Arenas, M., Paz-Wilches, J., Laganis-Valcarcel, S., Muñoz-Porras, F., Lopez-Jaramillo, P., Vesga-Guald, J., Perea-Buenaventura, D., Sanchez-Pedraza, R. 2015. Dialysis initiation and mortality in a population with chronic kidney disease in Colombia. Revista de la Facultad de Medicina, 63, 209–216.
- Sanchez Soto, J.M., Martinez Reyes, M., Quintero Soto, M.L., Padilla Loredo, S. 2012. Determinación de obesidad a personal de salud de primer nivel de la Jurisdicción de Nezahualcótotl (México) por medio del índice de masa corporal. Medwave, 12, e5464.
- Sandeep, S., Gokulakrishnan, K., Velmurugan, K., Deepa, M., Mohan, V. 2010. Visceral & subcutaneous abdominal fat in relation to insulin resistance & metabolic syndrome in non-diabetic south Indians. Indian Journal of Medical Research, 131, 629–635.
- Senan, E.M., Al-Adhaileh, M.H., Alsaade, F.W., Aldhyani, T.H.H., Alqarni, A.A., Alsharif, N., Uddin, M.I., Alahmadi, A.H., Jadhav, M.E., Alzahrani, M.Y. 2021. Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques. Journal of Healthcare Engineering, 2021, 1–10.
- Karim, S., Qadir, A., Farooq, U., Shakir, M., Laghari, A.A. 2023. Hyperspectral imaging: A review and trends towards medical imaging. Current Medical Imaging, 19, 417–427.
- Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez, T., Cuevas-Nasu, L., Bautista-Arredondo, S., Colchero, M.A., GaonaPineda, E.B., Lazcano-Ponce, E., Martinez-Barnetche, J., Alpuche-Arana, C., Rivera-Dommarco, J. 2021. Encuesta nacional de salud y nutrición 2020 sobre Covid-19. Resultados nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública, 135–152.
- Shamah-Levy, T., Vielma-Orozco, E., Heredia-Hernández, O., Romero-Martínez, M., Mojica-Cuevas, J., Cuevas-Nasu, L., Santaella-Castell, J.A., Rivera-Dommarco, J. 2020. Encuesta nacional de salud y nutrición 2018-19: Resultados nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública, 171–172.
- Das, S., Adhikary, A., Laghari, A. A., Mitra, S. 2023. Eldo-care: EEG with kinect sensor based telehealthcare for the disabled and the elderly. Neuroscience Informatics, 100130.
- Sparling, P.B. 2007. Obesity on campus. Preventing Chronic Disease, 4, A72.
- Šprogar, M., Kokol, P., Zorman, M., Podgorelec, V., Yamamoto, R., Masuda, G., Sakamoto, N. 2001. Supporting medical decisions with vector decision trees. In MEDINFO 2001, 552–556. IOS Press.
- Strzelecki, M., Badura, P. 2022. Machine Learning for Biomedical Application. Applied Sciences, 12, 1–5.
- Teng, L., Qiao, Y., Shafiq, M., Srivastava, G., Javed, A.R., Gadekallu, T.R, Yin, S. 2023. FLPK-BiSeNet: Federated learning based on priori knowledge and bilateral segmentation network for image edge extraction. IEEE Transactions on Network and Service Management, 20, 1529–1542.
- Wilson, S.L., Gallivan, A., Kratzke, C., Amatya, A. 2012. Nutritional status and socio-ecological factors associated with overweight/obesity at a rural-serving US-Mexico border university. Rural and Remote Health, 12, 1–15.