REFERENCES
- Almeida, T., Hidalgo, J.M., Silva, T. 2013. Towards SMS spam filtering: Results under a new dataset. International Journal of Information Security Science, 2, 1–18.
- Ardhianto, P., Subiakto, RBR., Lin, C-Y., Jan, Y-K., Liau, B-Y., Tsai, J-Y., Akbari, VBH., Lung, C-W. 2022. A deep learning method for foot progression angle detection in plantar pressure images, Sensors, 22, 2786.
- Assagaf, I., Sukandi, A., Abdillah, A.A., Arifin, S., Ga, J.L. 2023. Machine predictive maintenance by using support vector machines. Recent in Engineering Science and Technology, 1, 31–35.
- Budiman, E., Lawi, A., Wungo, S.L. 2019. Implementation of SVM kernels for identifying irregularities usage of smart electric voucher. 2019 5th International Conference on Computing Engineering and Design (ICCED), Singapore. 1–5.
- Cahyani, D.E., Patasik, I. 2021. Performance comparison of TF-IDF and Word2Vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10, 2780–2788.
- Chen, R.C., Dewi, C., Huang, S.W., Caraka, R.E. 2020. Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7, 52.
- Chong, K., Shah, N. 2022. Comparison of naive bayes and SVM classification in grid-search hyperparameter tuned and non-hyperparameter tuned healthcare stock market sentiment analysis. International Journal of Advanced Computer Science and Applications (IJACSA), 13, 90–94.
- Clarke, C.L.A., Fuhr, N., Kando, N., Kraaij, W., De Vries, A.P. 2007. SIGIR 2007. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Association for Computing Machinery, New York, USA.
- Cormack, G.V., Gómez Hidalgo, J.M., Sánz, E.P. 2007. Spam filtering for short messages. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, 313–320.
- Darmawan, Z.M.E., Dianta, A.F. 2023. Implementasi optimasi hyperparameter GridSearchCV pada sistem prediksi serangan jantung menggunakan SVM. Jurnal Ilmiah Sistem Informasi, 13, 8–15.
- Dewi, C., and Chen, R.C. 2022. Complement Naive Bayes Classifier for Sentiment Analysis of Internet Movie Database. In Intelligent Information and Database Systems: 14th Asian Conference, Vietnam. 81–93.
- Dewi, C., Chen, R.C. 2019. Random forest and support vector machine on features selection for regression analysis. International Journal of Innovative Computing, Information and Control, 15, 2027–2037.
- Dewi, C., Chen, R.C., Hendry, Hung, H.T. 2021. Experiment improvement of restricted Boltzmann machine methods for image classification. Vietnam Journal of Computer Science, 8, 417–432.
- Dewi, C., Tsai, B.J., Chen, R.C. 2022. Shapley additive explanations for text classification and sentiment analysis of internet movie database. 14th Asian Conference on Intelligent Information and Database Systems, 69–80.
- Fayaza, M.S.F., Farhath, F.F. 2021. Towards stop words identification in Tamil text clustering. International Journal of Advanced Computer Science and Applications, 12, 1–6.
- Guenther, N., Schonlau, M. 2016. Support vector machines, The Stata Journal, 16, 917–937.
- Gul, E., Alpaslan, N., Emiroglu, M.E. 2021. Robust optimization of SVM hyper-parameters for spillway type selection. Ain Shams Engineering Journal, 12, 2413–2423.
- Hamida, S., E.L. Gannour, O., Cherradi, B., Ouajji, H., Raihani, A. 2020. Optimization of machine learning algorithms hyper-parameters for improving the prediction of patients infected with COVID-19. 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), 1–6.
- Hidalgo, J.M.G., Bringas, G.C., Sánz, E.P., García, F.C. 2006. Content based SMS spam filtering. Proceedings of the 2006 ACM Symposium on Document Engineering, Amsterdam, Netherlands. 107–114.
- Hussain, Z.F., Ibraheem, H.R., Alsajri, M., Ali, A.H., Ismail, M.A., Kasim, S., Sutikno, T. 2020. A new model for iris data set classification based on linear support vector machine parameter’s optimization. International Journal of Electrical and Computer Engineering, 10, 1079–1084.
- Ibrahim, Y., Okafor, E., Yahaya, B. 2020. Optimization of RBF-SVM hyperparameters using genetic algorithm for face recognit. Nigerian Journal of Technology, 39, 1190–1197.
- Imrona, M.S., Widyawan, Nugroho, L.E. 2020. Pre-processing task for classifying satire in Indonesian news headline. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 176–179.
- Kosasih, R., Alberto, A. 2021. Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier. ILKOM Jurnal Ilmiah, 13, 101–109.
- Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J. 2008. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 35, 1817–1824.
- Mahajan, S.D., Ingle, D.R. 2021. News classification using machine learning. International Journal on Recent and Innovation Trends in Computing and Communication, 9, 873–877.
- Marcińczuk, M. 2017. Lemmatization of multi-word common noun phrases and named entities in Polish. Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, 483–491.
- Menaka, K., Karpagavalli, S. 2013. Breast cancer classification using support vector machine and genetic programming. International Journal of Innovative Research in Computer and Communication Engineering, 1, 1410–1417.
- Poomka, P., Pongsena, W., Kerdprasop, N., Kerdprasop, K. 2019. SMS spam detection based on long short-term memory and gated recurrent unit. International Journal of Future Computer and Communication, 8, 11–15.
- Ramasubramanian, C., Ramya, R. 2013. Effective pre-processing activities in text mining using improved porter’s stemming algorithm. International Journal of Advanced Research in Computer and Communication Engineering, 2, 4536–4538.
- Ritonga, A.S., Purwaningsih, E.S. 2018. Penerapan metode support vector machine (SVM) dalam klasifikasi kualitas pengelasan smaw (shield metal arc welding). Jurnal Ilmiah Edutic: Pendidikan dan Informatika, 5, 17–25.
- Shafi, J., Iqbal, H.R., Nawab, R.M.A., Rayson, P. 2022. UNLT: Urdu natural language toolkit. Natural Language Engineering, 1–36.
- Singh, M., Pamula, R., Shekhar, S.K. 2018. Email spam classification by support vector machine. In 2018 International Conference on Computing, Power and Communication Technologies (GUCON), 878–882.
- Sjarif, N.N.A., Azmi, N.F.M., Chuprat, S., Sarkan, H.M., Yahya, Y., Sam, S.M. 2019. SMS spam message detection using term frequency-inverse document frequency and random forest algorithm. Procedia Computer Science, 161, 509–515.
- Sjarif, N.N.A., Yahya, Y., Chuprat, S., Azmi, N.H.F.M. 2020. Support vector machine algorithm for SMS spam classification in the telecommunication industry. International Journal on Advanced Science Engineering Information Technology, 10, 635–639.
- Sultana, T., Sapnaz, K.A., Sana, F., Najath, M.J. 2020. Email based Spam Detection. International Journal of Engineering Research & Technology (IJERT), 9, 135–139.
- Sulthana, R., Jaithunbi, A.K., Harikrishnan, H., Varadarajan, V. 2022. Sentiment analysis on movie reviews dataset using support vector machines and ensemble learning. International Journal of Information Technology and Web Engineering (IJITWE), 17, 1–23.
- Syarif, I., Prugel-Bennett, A., Wills, G. 2016. SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14, 1502–1509.
- Tagg, C. 2009. A corpus linguistics study of sms text messaging. [Doctoral dissertation, University of Birmingham].
- Toman, M., Tesar, R., Jezek, K. 2006. Influence of word normalization on text classification. Proceedings of InSciT, 4, 354–358.
- Vijayarani, S., Ilamathi, M.J., Nithya, M. 2015. Preprocessing techniques for text mining-An overview. International Journal of Computer Science & Communication Networks, 5, 7–16.
- Wahyu Nugraha, A.S. 2022. Hyperparameter tuning pada algoritma klasifikasi dengan grid search. SISTEMASI: Jurnal Sistem Informasi, 11, 391–401.
- Wainer, J., Fonseca, P. 2021. How to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithms. Artificial Intelligence Review, 54, 4771–4797.
- Wan, C., Wang, Y., Liu, Y., Ji, J., Feng, G. 2019. Composite feature extraction and selection for text classification. IEEE Access, 7, 35208–35219.
- Wander Fernandes. 2020. Enron-Spam dataset, Version 1. Retrieved 2022-12-20 from https://www.kaggle.com/datasets/wanderfj/enron-spam.
- Wang, L., Feng, M., Zhou, B., Xiang, B., Mahadevan, S. 2015. Efficient hyper-parameter optimization for NLP applications. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2112–2117.
- Zareapoor, M., Seeja, K.R. 2015. Feature extraction or feature selection for text classification: A case study on phishing email detection. International Journal of Information Engineering and Electronic Business, 7, 60–65.